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ResNet: He et al. CVPR 2016.  
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The generative model 
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Face Morphable Model: Blanz, Vetter. SIGGRAPH 1999.  
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ShapeNet: Angel X. Chang, et al. arXiv:1512.03012 
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Test occluders 

Bars Fence Curtain Door Blinds 

-  Occlude face in stripes, mesh 
patterns, and large patches 

-  Three levels of occlusion, 
ranging from 15-55% of face 
covered 

Low 
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Occluded face perception task 



Occluded face perception task 



Occluded face perception task 

Same

Occluded à Unoccluded



Occluded face perception task 



Occluded face perception task 



Occluded face perception task 

Different

Unoccluded à Occluded



Behavioral results 

Occlusion Level 

Low Medium High 

Occluded à Unoccluded .77 .73 .67 

Unoccluded à Occluded .78 .76 .70 

Chance: .5 

Accuracy
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Naïve model: Learn to ignore the occluder 

Predict intrinsic and extrinsic 
face parameters directly. 
 

Can model become invariant 
to all types of occluders? No. 

Test occluders heavily influence 
face predictions. 
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Inverse graphics: Inverting the generative model 

Shape S; 
Texture T 

[Also see: Egger, et al. Occlusion-aware 3D Morphable Face Models. BMVC 2016.] 
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[Also see: Egger, et al. Occlusion-aware 3D Morphable Face Models. BMVC 2016.] 

Inverse graphics: Inverting the generative model 



Modeling causes allows for: 
 

(1)  face predictions that are 
invariant to occluders 

 

(2)  better generalization to 
unseen occluders 
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Image-space comparison Latent-space baseline VGG 

Prediction human judgments 
Sp

ea
rm

an
 ra

nk
 c

or
re

la
tio

n 

Low Medium High 

Occluded à Unoccluded

Low Medium High 

Unoccluded à Occluded



1.  Occluded face perception with causal  
 and compositional models 

2.  Automatic training-free vision-to-touch  
 crossmodal transfer 

 
3.  Learning visual causal models for  

 generic object categories  
Composite Texture	 Shape Lighting 



Shape is explicitly represented  
 

Immediate transfer to haptic 
domain  
 

Can make judgments based on 
grasping joint angles 

Vision-to-touch 
transfer 

Study Test



[3]	Dopjans	et	al,	IEEE	Transac*ons	on	Hap*cs,	2000	

Approximate	human	
performance[3]	

Vision-to-touch 
transfer 

Shape, S;  
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Grasping Engine 
Joint Angles 
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Causal intermediate stage 
visual representations of 
reflectance, shape, and lighting 
 

 

Causal models of 
generic objects 
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Inputs Shader Outputs Inputs Shader Outputs
Causal intermediate stage 
visual representations of 
reflectance, shape, and lighting 
 

Learn both the recognition 
model and the rendering 
function 
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Decomposing 
generic objects 

Causal intermediate stage 
visual representations of 
reflectance, shape, and lighting 
 

Learn both the recognition 
model and the rendering 
function 
 

Representation learning driven 
by reconstruction error 
 
 

Observation

Initial 
prediction

Unsupervised 
improvement



Summary	
-  Causal and compositional models better  
    predict human judgments 

-  Modeling causes allows for training-free  
    crossmodal transfer 

-  Causal models can improve internal  
    representations without supervision 
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Study Test

Latent-space comparison

Image-space comparisonImage-space comparison

Latent-space comparison

Comparison Pipeline 

Predict latents of both faces 

Render study face with pose 
of test face 
 

Occlude rendering and test 
image with mask 
 

Compare in image (or latent) 
space  


