Causal and compositional generative models in online perception

Michael Janner

with Ilker Yildirim, Mario Belledonne, Christian

Wallraven, Winrich Freiwald, Joshua Tenenbaum

MIT

ResNet-18 predictions

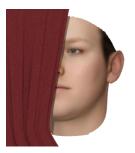
zebra		98%
dalmation	.2%	
park bench	.1%	

•

ResNet: He et al. CVPR 2016.

Outline

1. Occluded face perception with causal and compositional models



Outline

1. Occluded face perception with causal and compositional models

2. Automatic training-free vision-to-touch crossmodal transfer

Outline

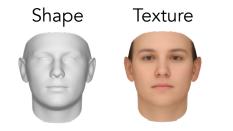
1. Occluded face perception with causal and compositional models

2. Automatic training-free vision-to-touch crossmodal transfer

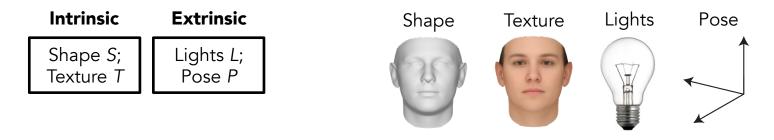
3. Learning visual causal models for generic object categories

Intrinsic

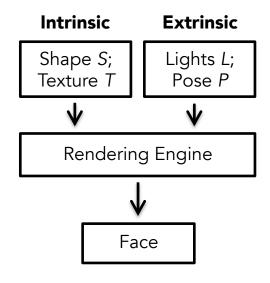
Shape S;	
Texture T	



Face Morphable Model: Blanz, Vetter. SIGGRAPH 1999.

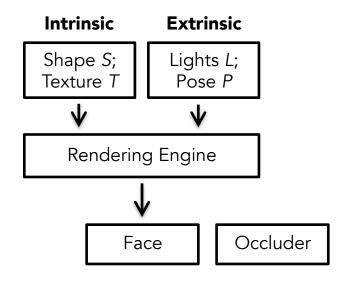


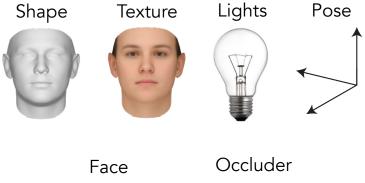
Face Morphable Model: Blanz, Vetter. SIGGRAPH 1999.

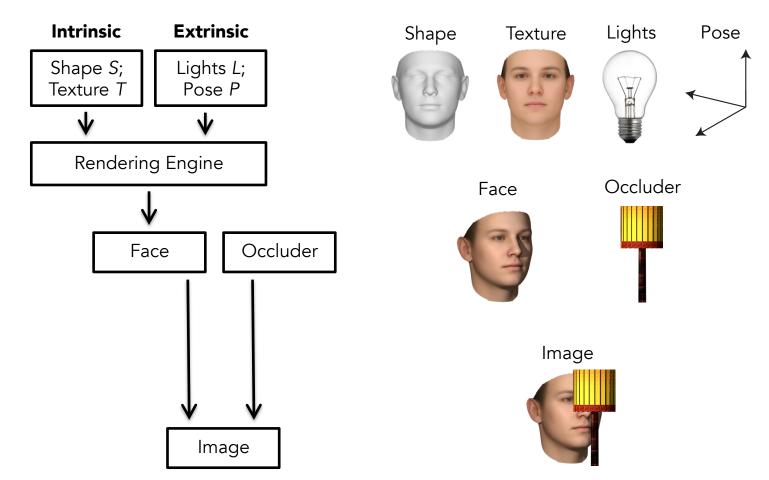


Face

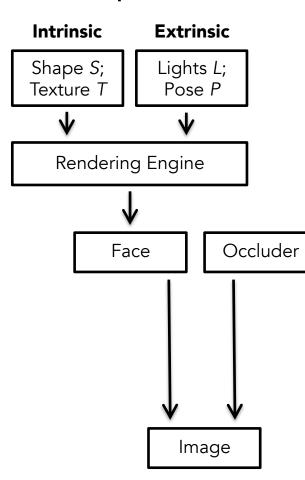
Face Morphable Model: Blanz, Vetter. SIGGRAPH 1999.



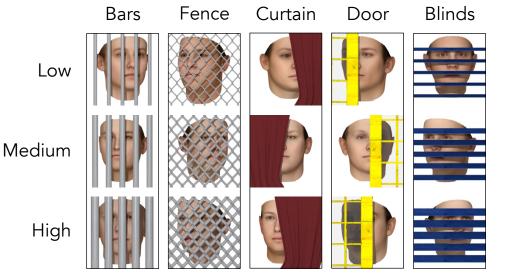




Samples from the generative model



Test occluders



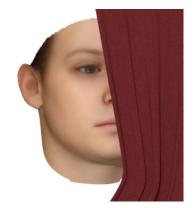
- Occlude face in stripes, mesh patterns, and large patches
- Three levels of occlusion, ranging from 15-55% of face covered



$\mathbf{Occluded} \rightarrow \mathbf{Unoccluded}$

Same

Unoccluded \rightarrow Occluded



Different

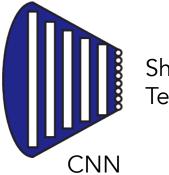
Behavioral results

Accuracy

	Occlusion Level				
	Low		Medium	High	
Occluded \rightarrow Unoccluded		.77	.73		.67
Unoccluded \rightarrow Occluded		.78	.76		.70

Chance: .5

Naïve model: Learn to ignore the occluder

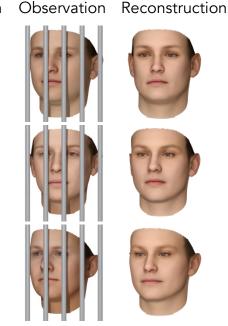


Shape *S*; Texture *T* Predict intrinsic and extrinsic face parameters directly.

Can model become invariant to all types of occluders?

Naïve model: Learn to ignore the occluder

Observation Reconstruction

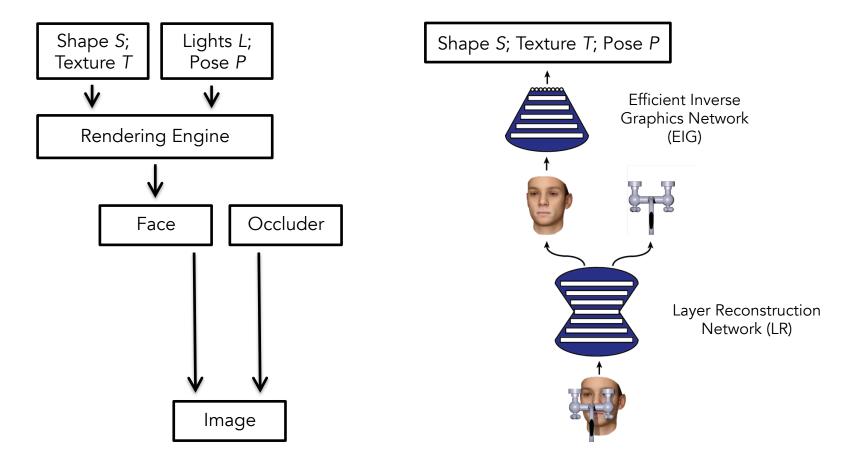


Predict intrinsic and extrinsic face parameters directly.

Can model become invariant to all types of occluders? **No.**

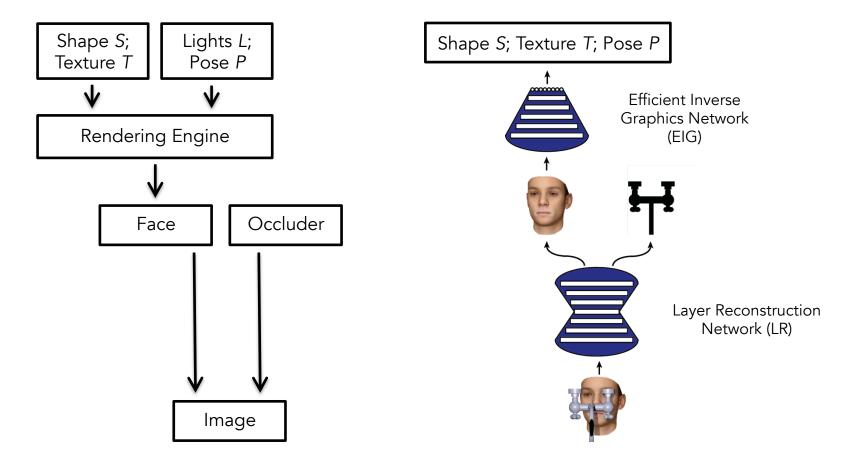
Test occluders heavily influence face predictions.

Inverse graphics: Inverting the generative model

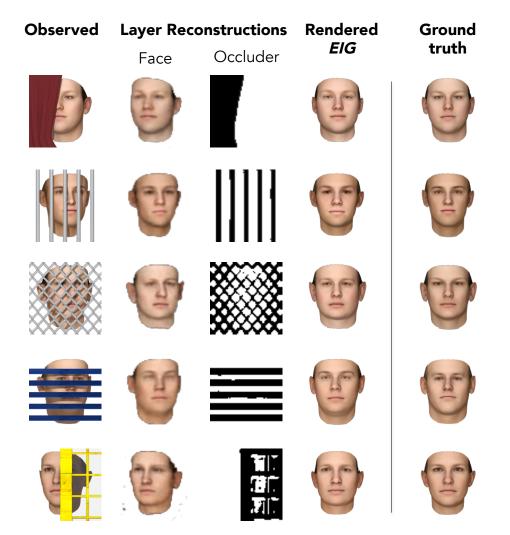


[Also see: Egger, et al. Occlusion-aware 3D Morphable Face Models. BMVC 2016.]

Inverse graphics: Inverting the generative model



[Also see: Egger, et al. Occlusion-aware 3D Morphable Face Models. BMVC 2016.]



Modeling causes allows for:

- (1) face predictions that are invariant to occluders
- (2) better generalization to unseen occluders

Prediction human judgments

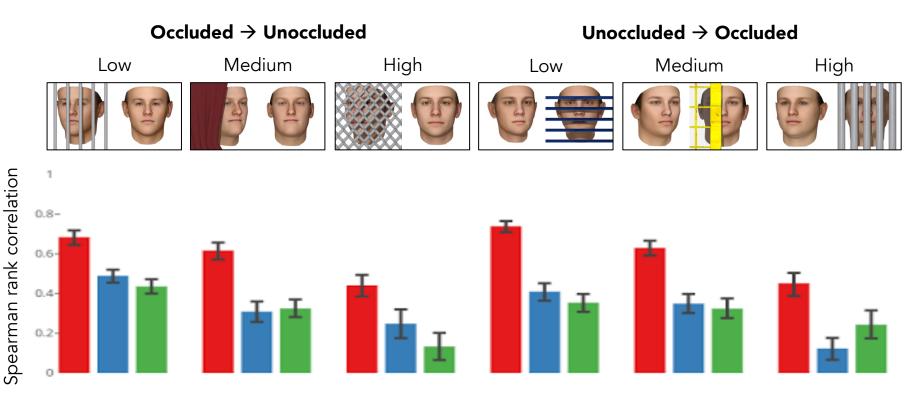


Image-space comparison

Latent-space baseline

1. Occluded face perception with causal and compositional models

2. Automatic training-free vision-to-touch crossmodal transfer

3. Learning visual causal models for generic object categories

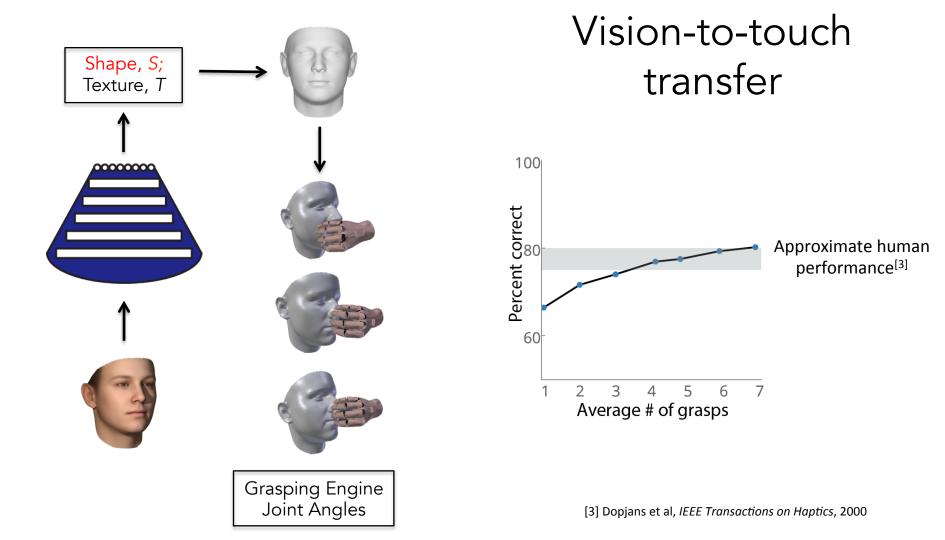
Vision-to-touch transfer

Shape is explicitly represented Immediate transfer to haptic domain

Can make judgments based on grasping joint angles

Study

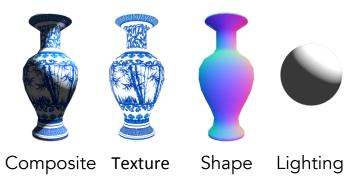
Test

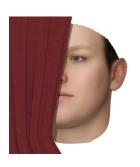


1. Occluded face perception with causal and compositional models

2. Automatic training-free vision-to-touch crossmodal transfer

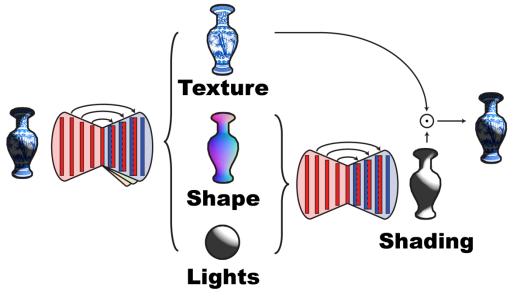
3. Learning visual causal models for generic object categories





Causal models of generic objects

Causal intermediate stage visual representations of reflectance, shape, and lighting



Inputs

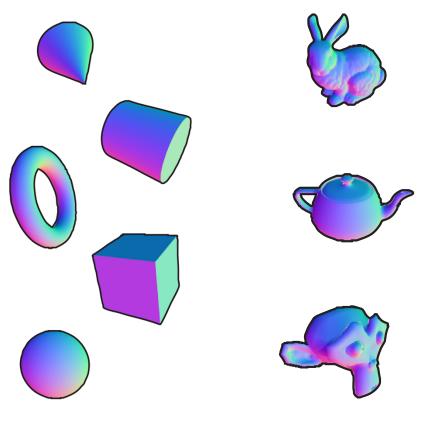
2

Shader Outputs

Decomposing generic objects

Causal intermediate stage visual representations of reflectance, shape, and lighting

Learn both the recognition model and the rendering function



Train shapes

Test shapes

Decomposing generic objects

Causal intermediate stage visual representations of reflectance, shape, and lighting

Learn both the recognition model and the rendering function

Representation learning driven by reconstruction error

Observation Initial prediction Unsupervised improvement

Decomposing generic objects

Causal intermediate stage visual representations of reflectance, shape, and lighting

Learn both the recognition model and the rendering function

Representation learning driven by reconstruction error

Summary

- Causal and compositional models better predict human judgments
- Modeling causes allows for training-free crossmodal transfer
- Causal models can improve internal representations without supervision

Thank you

llker Yildirim Mario Belledonne

Christian Wallraven

Winrich Freiwald Joshua Tenenbaum

Comparison Pipeline

Predict latents of both faces

Render study face with pose of test face

Occlude rendering and test image with mask

Compare in image (or latent) space

